Generator
Module: base
Class: BaseGenerator
class BaseGenerator(BaseComponent)
Abstract class for Generators
predict
| @abstractmethod
| predict(query: str, documents: List[Document], top_k: Optional[int]) -> Dict
Abstract method to generate answers.
Arguments:
query
: Querydocuments
: Related documents (e.g. coming from a retriever) that the answer shall be conditioned on.top_k
: Number of returned answers
Returns:
Generated answers plus additional infos in a dict
Module: transformers
Class: RAGenerator
class RAGenerator(BaseGenerator)
Implementation of Facebook's Retrieval-Augmented Generator (https://arxiv.org/abs/2005.11401) based on HuggingFace's transformers (https://huggingface.co/transformers/model_doc/rag.html).
Instead of "finding" the answer within a document, these models generate the answer. In that sense, RAG follows a similar approach as GPT-3 but it comes with two huge advantages for real-world applications: a) it has a manageable model size b) the answer generation is conditioned on retrieved documents, i.e. the model can easily adjust to domain documents even after training has finished (in contrast: GPT-3 relies on the web data seen during training)
Example
| query = "who got the first nobel prize in physics?"
|
| # Retrieve related documents from retriever
| retrieved_docs = retriever.retrieve(query=query)
|
| # Now generate answer from query and retrieved documents
| generator.predict(
| query=query,
| documents=retrieved_docs,
| top_k=1
| )
|
| # Answer
|
| {'query': 'who got the first nobel prize in physics',
| 'answers':
| [{'query': 'who got the first nobel prize in physics',
| 'answer': ' albert einstein',
| 'meta': { 'doc_ids': [...],
| 'doc_scores': [80.42758 ...],
| 'doc_probabilities': [40.71379089355469, ...
| 'texts': ['Albert Einstein was a ...]
| 'titles': ['"Albert Einstein"', ...]
| }}]}
__init__
| __init__(model_name_or_path: str = "facebook/rag-token-nq", model_version: Optional[str] = None, retriever: Optional[DensePassageRetriever] = None, generator_type: RAGeneratorType = RAGeneratorType.TOKEN, top_k_answers: int = 2, max_length: int = 200, min_length: int = 2, num_beams: int = 2, embed_title: bool = True, prefix: Optional[str] = None, use_gpu: bool = True)
Load a RAG model from Transformers along with passageembeddingmodel. See https://huggingface.co/transformers/model_doc/rag.html for more details
Arguments:
model_name_or_path
: Directory of a saved model or the name of a public model e.g. 'facebook/rag-token-nq', 'facebook/rag-sequence-nq'. See https://huggingface.co/models for full list of available models.model_version
: The version of model to use from the HuggingFace model hub. Can be tag name, branch name, or commit hash.retriever
:DensePassageRetriever
used to embedded passagegenerator_type
: Which RAG generator implementation to use? RAG-TOKEN or RAG-SEQUENCEtop_k_answers
: Number of independently generated text to returnmax_length
: Maximum length of generated textmin_length
: Minimum length of generated textnum_beams
: Number of beams for beam search. 1 means no beam search.embed_title
: Embedded the title of passage while generating embeddingprefix
: The prefix used by the generator's tokenizer.use_gpu
: Whether to use GPU (if available)
predict
| predict(query: str, documents: List[Document], top_k: Optional[int] = None) -> Dict
Generate the answer to the input query. The generation will be conditioned on the supplied documents. These document can for example be retrieved via the Retriever.
Arguments:
query
: Querydocuments
: Related documents (e.g. coming from a retriever) that the answer shall be conditioned on.top_k
: Number of returned answers
Returns:
Generated answers plus additional infos in a dict like this:
| {'query': 'who got the first nobel prize in physics',
| 'answers':
| [{'query': 'who got the first nobel prize in physics',
| 'answer': ' albert einstein',
| 'meta': { 'doc_ids': [...],
| 'doc_scores': [80.42758 ...],
| 'doc_probabilities': [40.71379089355469, ...
| 'texts': ['Albert Einstein was a ...]
| 'titles': ['"Albert Einstein"', ...]
| }}]}