Integration: Veracity Node

A node to check the validity of an answer, based on the given context.


This Node checks whether the given input is correctly answered by the given context (as judged by the given LLM). One example usage is together with Haystack Memory: After the memory is retrieved, the given model checks whether the output is satisfying the question.

Important: The Node expects the context to be passed into results. If the previous node in the pipeline is putting the text somewhere else, use a Shaper to rename the argument to results.


Clone the repo to a directory, change to that directory, then perform a pip install '.'. This will install the package to your Python libraries.


Example Usage with Haystack Memory

from haystack_veracity_node.node import VeracityNode
from haystack_memory.memory import RedisMemoryRecallNode
from haystack_memory.prompt_templates import memory_template
from haystack import Pipeline
from haystack.agents import Agent, Tool
from haystack.nodes import PromptNode

# Create VeracityNode
veracity_node = VeracityNode(model_name_or_path="gpt-3.5-turbo", api_key="YOUR_KEY")

# Create Memory
redis_memory_node = RedisMemoryRecallNode(memory_id="agent_memory",

# Add them together in a pipeline
memory_pipeline = Pipeline()
memory_pipeline.add_node(component=redis_memory_node, name="MemoryTool", inputs=["Query"])
memory_pipeline.add_node(component=veracity_node, name="VeracityNode", inputs=["MemoryTool"])

# Create an agent and add the pipeline as a tool
prompt_node = PromptNode(model_name_or_path="gpt-3.5-turbo-instruct", api_key=openai_api_key, max_length=512,
memory_agent = Agent(prompt_node=prompt_node, prompt_template=memory_template)
memory_tool = Tool(name="Memory",
                   description="Your memory. Always access this tool first to remember what you have learned.")