โญ๏ธ Highlights
Agent Component with State Management
The
Agent
component enables tool-calling functionality with provider-agnostic chat model support and can be used as a standalone component or within a pipeline.
With
SERPERDEV_API_KEY and
OPENAI_API_KEY defined, a Web Search Agent is as simple as:
from haystack.components.agents import Agent
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.websearch import SerperDevWebSearch
from haystack.dataclasses import ChatMessage
from haystack.tools.component_tool import ComponentTool
web_tool = ComponentTool(
component=SerperDevWebSearch(),
)
agent = Agent(
chat_generator=OpenAIChatGenerator(),
tools=[web_tool],
)
result = agent.run(
messages=[ChatMessage.from_user("Find information about Haystack by deepset")]
)
The Agent
supports streaming responses, customizable exit conditions, and a flexible state management system that enables tools to share and modify data during execution:
agent = Agent(
chat_generator=OpenAIChatGenerator(),
tools=[web_tool, weather_tool],
exit_conditions=["text", "weather_tool"],
state_schema = {...},
streaming_callback=streaming_callback,
)
SuperComponent for Reusable Pipelines
SuperComponent
allows you to wrap complex pipelines into reusable components. This makes it easy to reuse them across your applications. Just initialize a SuperComponent
with a pipeline:
from haystack import Pipeline, SuperComponent
with open("pipeline.yaml", "r") as file:
pipeline = Pipeline.load(file)
super_component = SuperComponent(pipeline)
That’s not all! To show the benefits, there are three ready-made SuperComponent
s in haystack-experimental
.
For example, there is a
MultiFileConverter
that wraps a pipeline with converters for CSV, DOCX, HTML, JSON, MD, PPTX, PDF, TXT, and XSLX. After installing the integration dependencies pip install pypdf markdown-it-py mdit_plain trafilatura python-pptx python-docx jq openpyxl tabulate
, you can run with any of the supported file types as input:
from haystack_experimental.super_components.converters import MultiFileConverter
converter = MultiFileConverter()
converter.run(sources=["test.txt", "test.pdf"], meta={})
Here’s an example of creating a custom SuperComponent
from any Haystack pipeline:
from haystack import Pipeline, SuperComponent
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.builders import ChatPromptBuilder
from haystack.components.retrievers import InMemoryBM25Retriever
from haystack.dataclasses.chat_message import ChatMessage
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.dataclasses import Document
document_store = InMemoryDocumentStore()
documents = [
Document(content="Paris is the capital of France."),
Document(content="London is the capital of England."),
]
document_store.write_documents(documents)
prompt_template = [
ChatMessage.from_user(
'''
According to the following documents:
{% for document in documents %}
{{document.content}}
{% endfor %}
Answer the given question: {{query}}
Answer:
'''
)
]
prompt_builder = ChatPromptBuilder(template=prompt_template, required_variables="*")
pipeline = Pipeline()
pipeline.add_component("retriever", InMemoryBM25Retriever(document_store=document_store))
pipeline.add_component("prompt_builder", prompt_builder)
pipeline.add_component("llm", OpenAIChatGenerator())
pipeline.connect("retriever.documents", "prompt_builder.documents")
pipeline.connect("prompt_builder.prompt", "llm.messages")
# Create a super component with simplified input/output mapping
wrapper = SuperComponent(
pipeline=pipeline,
input_mapping={
"query": ["retriever.query", "prompt_builder.query"],
},
output_mapping={"llm.replies": "replies"}
)
# Run the pipeline with simplified interface
result = wrapper.run(query="What is the capital of France?")
print(result)
# {'replies': [ChatMessage(_role=<ChatRole.ASSISTANT: 'assistant'>,
# _content=[TextContent(text='The capital of France is Paris.')],...)
โฌ๏ธ Upgrade Notes
-
Updated
ChatMessage
serialization and deserialization.ChatMessage.to_dict()
now returns a dictionary with the keys: role, content, meta, and name.ChatMessage.from_dict()
supports this format and maintains compatibility with older formats.If your application consumes the result of
ChatMessage.to_dict()
, update your code to handle the new format. No changes are needed if you’re usingChatPromptBuilder
in a Pipeline. -
LLMEvaluator
,ContextRelevanceEvaluator
, andFaithfulnessEvaluator
now internally use a ChatGenerator instance instead of a Generator instance. The public attribute generator has been replaced with _chat_generator. -
to_pandas
,comparative_individual_scores_report
andscore_report
were removed fromEvaluationRunResult
, please usedetailed_report
,comparative_detailed_report
andaggregated_report
instead.
๐ New Features
- Treat bare types (e.g., List, Dict) as generic types with Any arguments during type compatibility checks.
- Add compatibility for Callable types.
- Adds
outputs_to_string
to Tool and ComponentTool to allow users to customize how the output of aTool
should be converted into a string so that it can be provided back to the ChatGenerator in aChatMessage
. Ifoutputs_to_string
is not provided, a default converter is used withinToolInvoker
. The default handler uses the current default behavior. - Added a new parameter
split_mode
to the CSVDocumentSplitter component to control the splitting mode. The new parameter can be set to row-wise to split the CSV file by rows. The default value is threshold, which is the previous behavior. - We added a new retrieval technique, AutoMergingRetriever which together with the HierarchicalDocumentSplitter implement a auto-merging retrieval technique.
- Add
run_async
method toHuggingFaceLocalChatGenerator
. This method internally uses ThreadPoolExecutor to return coroutines that can be awaited. - Introduced asynchronous functionality and HTTP/2 support in the LinkContentFetcher component, thus improving content fetching in several aspects.
- The
DOCXToDocument component now has the option to include extracted hyperlink addresses in the output
Documents
. It accepts a link_format parameter that can be set to “markdown” or “plain”. By default, no hyperlink addresses are extracted as before. - Added a new parameter
azure_ad_token_provider
to all Azure OpenAI components:AzureOpenAIGenerator
,AzureOpenAIChatGenerator
,AzureOpenAITextEmbedder
andAzureOpenAIDocumentEmbedder
. This parameter optionally accepts a callable that returns a bearer token, enabling authentication via Azure AD.- Introduced the utility function
default_azure_token_provider
in haystack/utils/azure.py. This function provides a default token provider that is serializable by Haystack. Users can now passdefault_azure_token_provider
as theazure_ad_token_provider
or implement a custom token provider.
- Introduced the utility function
- Users can now work with date and time in the
ChatPromptBuilder
. In the same way as thePromptBuilder
, theChatPromptBuilder
now supports arrow to work with datetime. - Introduce new State dataclass with a customizable schema for managing Agent state. Enhance error logging of Tool and extend the ToolInvoker component to work with newly introduced State.
- The RecursiveDocumentSplitter now supports splitting by number of tokens. Setting “split_unit” to “token” will use a hard-coded tiktoken tokenizer (o200k_base) and requires having tiktoken installed.
โก๏ธ Enhancement Notes
-
LLMEvaluator
,ContextRelevanceEvaluator
, andFaithfulnessEvaluator
now accept achat_generator
initialization parameter, consisting of ChatGenerator instance pre-configured to return a JSON object. Previously, these components only supported OpenAI and LLMs with OpenAI-compatible APIs. Regardless of whether the evaluator components are initialized withapi
,api_key
, andapi_params
or the new chat_generator parameter, the serialization format will now only includechat_generator
in preparation for the future removal ofapi
,api_key
, andapi_params
. - Improved error handling for component run failures by raising a runtime error that includes the component’s name and type.
- When using Haystack’s
Agent
, the messages are stored and accumulated in State. This means:- State is required to have a “messages” type and handler defined in its schema. If not provided, a default type and handler are provided. Users can now customize how messages are accumulated by providing a custom handler for messages through the State schema.
- Added PDFMinerToDocument functionality to detect and report undecoded CID characters in PDF text extraction, helping users identify potential text extraction quality issues when processing PDFs with non-standard fonts.
- The Agent component allows defining multiple exit conditions instead of a single condition. The init parameter has been renamed from
exit_condition
toexit_conditions
to reflect that. - Introduce a ChatGenerator Protocol to qualify ChatGenerator components from a static type-checking perspective. It defines the minimal interface that Chat Generators must implement. This will especially help to standardize the integration of Chat Generators into other more complex components.
- In
Agent
, we check all messages from the LLM when doing an exit condition check. For example, it’s possible the LLM returns multiple messages, such as multiple tool calls, or includes messages with reasoning. Now we check all messages before assessing if we should exit the loop. - The
Agent
component checks whether the ChatGenerator it is initialized with supports tools. If it doesn’t, the Agent raises a TypeError. - Updated SentenceTransformersDiversityRanker to use the token parameter internally instead of the deprecated use_auth_token. The public API of this component already utilizes token.
- Simplified the serialization code for better readability and maintainability.
- Updated deserialization to allow users to omit the typing. prefix for standard typing library types (e.g., List[str] instead of typing.List[str]).
- Refactored the processing of streaming chunks from OpenAI to simplify logic.
- Added tests to ensure expected behavior when handling streaming chunks when using include_usage=True.
- Updates the doc strings of the
BranchJoiner
to more understandable and better highlight where it’s useful. - Consolidate the use of select_streaming_callback utility in OpenAI and Azure ChatGenerators, which checks the compatibility of streaming_callback with the async or non-async run method.
- Added a warning to
ChatPromptBuilder
andPromptBuilder
when prompt variables are present andrequired_variables
is unset to help users avoid unexpected execution in multi-branch pipelines. The warning recommends users to setrequired_variables
.
โ ๏ธ Deprecation Notes
- The
api
,api_key
, andapi_params
parameters forLLMEvaluator
,ContextRelevanceEvaluator
, andFaithfulnessEvaluator
are now deprecated and will be removed in Haystack 2.13.0. By default, these components will continue to use OpenAI in JSON mode. To configure a specific LLM, use thechat_generator
parameter. - The generator_api and generator_api_params initialization parameters of LLMMetadataExtractor and the LLMProvider enum are deprecated and will be removed in Haystack 2.13.0. Use
chat_generator
instead to configure the underlying LLM. For example, changegenerator_api=LLMProvider.OPENAI
tochat_generator=OpenAIChatGenerator()
.
๐ Bug Fixes
- Add dataframe to legacy fields for the Document dataclass. This fixes a bug where
Document.from_dict()
in haystack-ai>=2.11.0 could not properly deserialize a Document dictionary obtained withdocument.to_dict(flatten=False)
in haystack-ai<=2.10.0. - In DALLEImageGenerator, ensure that the max_retries initialization parameter is correctly set when it is equal to 0.
- Fixed an index error in the logging module when arbitrary strings are logged.
- Ensure that the
max_retries
initialization parameter is correctly set when equal 0 inAzureOpenAIGenerator
,AzureOpenAIChatGenerator
,AzureOpenAITextEmbedder
andAzureOpenAIDocumentEmbedder
. - Improved serialization and deserialization in haystack/utils/type_serialization.py to handle Optional types correctly.
- Replace lazy imports with eager imports in haystack/__init__.py to avoid potential static type checking issues and simplify maintenance.
- Fix an issue that prevented Jinja2-based ComponentTools from being passed into pipelines at runtime.
- Improved type hinting for the
component.output_types
decorator. The type hinting for the decorator was originally introduced to avoid overshadowing the type hinting of the run method and allow proper static type checking. This update extends support to asynchronous run_async methods. - Fixed issue with
MistralChatGenerator
not returning a finish_reason when using streaming. Fixed by adjusting how we look for the finish_reason when processing streaming chunks. Now, the last non-None finish_reason is used to handle differences between OpenAI and Mistral.