📅 Join the Haystack AMA session for "Building AI Applications with Haystack" on DeepLearning.AI
Maintained by deepset

Integration: NVIDIA

Use NVIDIA models with Haystack.

Authors
deepset

Table of Contents

Overview

NVIDIA AI Foundation Models and NVIDIA Inference Microservices allow you to reach optimal performance on NVIDIA accelerated infrastructure. With pretrained generative AI models, enterprises can create custom models faster and take advantage of the latest training and inference techniques.

This integration allows you to use NVIDIA Foundation Models and NVIDIA Inference Microservices in your Haystack pipelines.

In order to use this integration, you’ll need a NVIDIA API key. Set it as an environment variable, NVIDIA_API_KEY.

Installation

pip install nvidia-haystack

Usage

Components

This integration introduces the following components:

  • NvidiaTextEmbedder: A component for embedding strings, using NVIDIA AI Foundation and NVIDIA Inference Microservices embedding models.

    For models that differentiate between query and document inputs, this component embeds the input string as a query.

  • NvidiaDocumentEmbedder: A component for embedding documents, using NVIDIA AI Foundation and NVIDIA Inference Microservices embedding models.

  • NvidiaGenerator: A component for generating text using generative models provided by NVIDIA AI Foundation Endpoints and NVIDIA Inference Microservices.

  • NvidiaRanker: A component for ranking documents, using NVIDIA NIMs.

Use the components on their own:

NvidiaTextEmbedder:

from haystack_integrations.components.embedders.nvidia import NvidiaTextEmbedder

text_to_embed = "I love pizza!"

text_embedder = NvidiaTextEmbedder(model="nvolveqa_40k")
text_embedder.warm_up()

print(text_embedder.run(text_to_embed))
# {'embedding': [-0.02264290489256382, -0.03457780182361603, ...}

NvidiaDocumentEmbedder:

from haystack.dataclasses import Document
from haystack_integrations.components.embedders.nvidia import NvidiaDocumentEmbedder

documents = [Document(content="Pizza is made with dough and cheese"),
             Document(content="Cake is made with floud and sugar"),
             Document(content="Omlette is made with eggs")]



document_embedder = NvidiaDocumentEmbedder(model="nvolveqa_40k")
document_embedder.warm_up()
document_embedder.run(documents=documents)
#{'documents': [Document(id=2136941caed9b4667d83f906a80d9a2fad1ce34861392889016830ac8738e6c4, content: 'Pizza is made with dough and cheese', embedding: vector of size 1024), ... 'meta': {'usage': {'prompt_tokens': 36, 'total_tokens': 36}}}

NvidiaGenerator:

from haystack_integrations.components.generators.nvidia import NvidiaGenerator

generator = NvidiaGenerator(
    model="nv_llama2_rlhf_70b",
    model_arguments={
        "temperature": 0.2,
        "top_p": 0.7,
        "max_tokens": 1024,
        "seed": None,
        "bad": None,
        "stop": None,
    },
)
generator.warm_up()

result = generator.run(prompt="When was the Golden Gate Bridge built?")
print(result["replies"])
print(result["meta"])
# ['The Golden Gate Bridge was built in 1937 and was completed and opened to the public on May 29, 1937....'[{'role': 'assistant', 'finish_reason': 'stop'}]

NvidiaRanker:

from haystack_integrations.components.rankers.nvidia import NvidiaRanker
from haystack import Document
from haystack.utils import Secret

ranker = NvidiaRanker(
    api_key=Secret.from_env_var("NVIDIA_API_KEY"),
)
ranker.warm_up()

query = "What is the capital of Germany?"
documents = [
    Document(content="Berlin is the capital of Germany."),
    Document(content="The capital of Germany is Berlin."),
    Document(content="Germany's capital is Berlin."),
]

result = ranker.run(query, documents, top_k=1)
print(result["documents"][0].content)
# The capital of Germany is Berlin.

Use NVIDIA components in Haystack pipelines

Indexing pipeline

from haystack_integrations.components.generators.nvidia import NvidiaGenerator
from haystack_integrations.components.embedders.nvidia import NvidiaDocumentEmbedder
from haystack import Pipeline
from haystack.dataclasses import Document
from haystack.components.writers import DocumentWriter
from haystack.document_stores.in_memory import InMemoryDocumentStore

documents = [Document(content="Tilde lives in San Francisco"),
             Document(content="Tuana lives in Amsterdam"),
             Document(content="Bilge lives in Istanbul")]

document_store = InMemoryDocumentStore()

document_embedder = NvidiaDocumentEmbedder(model="nvolveqa_40k")
writer = DocumentWriter(document_store=document_store)

indexing_pipeline = Pipeline()
indexing_pipeline.add_component(instance=document_embedder, name="document_embedder")
indexing_pipeline.add_component(instance=writer, name="writer")

indexing_pipeline.connect("document_embedder.documents", "writer.documents")
indexing_pipeline.run(data={"document_embedder":{"documents": documents}})

# Calling filter with no arguments will print the contents of the document store
document_store.filter_documents({})

RAG Query pipeline

from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
from haystack.components.builders import PromptBuilder
from haystack_integrations.components.generators.nvidia import NvidiaGenerator
from haystack_integrations.components.embedders.nvidia import NvidiaTextEmbedder

prompt = """ Answer the query, based on the
content in the documents.
If you can't answer based on the given documents, say so.

Documents:
{% for doc in documents %}
  {{doc.content}}
{% endfor %}

Query: {{query}}
"""

text_embedder = NvidiaTextEmbedder(model="nvolveqa_40k")
retriever = InMemoryEmbeddingRetriever(document_store=document_store)
prompt_builder = PromptBuilder(template=prompt)
generator = NvidiaGenerator(model="nv_llama2_rlhf_70b")
generator.warm_up()

rag_pipeline = Pipeline()

rag_pipeline.add_component(instance=text_embedder, name="text_embedder")
rag_pipeline.add_component(instance=retriever, name="retriever")
rag_pipeline.add_component(instance=prompt_builder, name="prompt_builder")
rag_pipeline.add_component(instance=generator, name="generator")

rag_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
rag_pipeline.connect("retriever.documents", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "generator")

question = "Who lives in San Francisco?"
result = rag_pipeline.run(data={"text_embedder":{"text": question},
                                "prompt_builder":{"query": question}})
print(result)
# {'text_embedder': {'meta': {'usage': {'prompt_tokens': 10, 'total_tokens': 10}}}, 'generator': {'replies': ['Tilde'], 'meta': [{'role': 'assistant', 'finish_reason': 'stop'}], 'usage': {'completion_tokens': 3, 'prompt_tokens': 101, 'total_tokens': 104}}}

License

nvidia-haystack is distributed under the terms of the Apache-2.0 license.