๐Ÿ“š Learn how to turn Haystack pipelines into production-ready REST APIs or MCP tools

Integration: Featherless AI

Get access to thousands of open source language models hosted by Featherless.ai

Authors
Featherless AI

Table of Contents

Overview

Featherless AI is a serverless AI inference platform. Our goal is to make all AI models available for serverless inference and weโ€™ve started with large language models (e.g. Qwen, Llama, Mistral, DeepSeek, RWKV). We provide inference via API to a continually expanding library of open-weight models, including the most popular models for role-playing, creative writing, coding assistance, and more.

To start using Featherless, sign up for an API key here.

Usage

Featherless AI is OpenAI compatible, making it easy to use in Haystack via OpenAI Generators.

Using ChatGenerator

See an example of engaging in a multi-turn conversation with mistralai/Mistral-Small-24B-Instruct-2501 You need to set the environment variable FEATHERLESS_API_KEY and choose a model from our catalog.

from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.dataclasses import ChatMessage
from haystack.utils import Secret
import os

os.environ["FEATHERLESS_API_KEY"] = "YOUR_FEATHERLESS_API_KEY"

generator = OpenAIChatGenerator(
    api_key=Secret.from_env_var("FEATHERLESS_API_KEY"),
    api_base_url="https://api.featherless.ai/v1",
    model="mistralai/Mistral-Small-24B-Instruct-2501",
    generation_kwargs = {"max_tokens": 512}
)


messages = []

while True:
    msg = input("Enter your message or Q to exit\n๐Ÿง‘ ")
    if msg=="Q":
        break
    messages.append(ChatMessage.from_user(msg))
    response = generator.run(messages=messages)
    assistant_resp = response['replies'][0]
    print("๐Ÿค– "+assistant_resp.text)
    messages.append(assistant_resp)