πŸ“… Join the Haystack AMA session for "Building AI Applications with Haystack" on DeepLearning.AI

Integration: Mastodon Fetcher

A custom component to fetch a mastodon usernames latest posts

Authors
Tuana Γ‡elik

The MastodonFetcher is a simple custom component that fetches the last_k_posts of a given Mastodon username. You can see a demo of this custom component in the πŸ¦„ Should I Follow? space on Hugging Face πŸ€—.

The latest versions of mastodon-fetcher-haystack are compatible only with Haystack 2.x. You need to specify the version explicitly to import the MastodonFetcher component suitable with Haystack 1.x.

Table of Contents

Haystack 2.0

This component expects username to be a complete Mastodon username. For example “ tuana@sigmoid.social”. If the provided username is correct and public, MastodonFetcher will return a list of Document objects where the contents are the users latest posts.

Installation (2.0)

pip install mastodon-fetcher-haystack

Usage (2.0)

You can use this component on its own, or in a pipeline.

On its own:

from mastodon_fetcher_haystack.mastodon_fetcher import MastodonFetcher

mastodon_fetcher = MastodonFetcher()
mastodon_fetcher.run(username="tuana@sigmoid.social")

In a pipeline

from haystack import Pipeline
from haystack.utils import Secret
from mastodon_fetcher_haystack.mastodon_fetcher import MastodonFetcher
from haystack.components.generators import OpenAIGenerator
from haystack.components.builders import PromptBuilder

prompt_builder = PromptBuilder(template='YOUR_PROMPT_TEMPLATE')
llm = OpenAIGenerator(api_key=Secret.from_token("YOUR_OPENAI_API_KEY"))

pipe = Pipeline()
pipe.add_component("fetcher", mastodon_fetcher)
pipe.add_component("prompt_builder", prompt_builder)
pipe.add_component("llm", llm)

pipe.connect("fetcher.documents", "prompt_builder.documents")
pipe.connect("prompt_builder.prompt", "llm.prompt")
pipe.run(data={"fetcher": {"username": "tuana@sigmoid.social"}})

Haystack 1.x

This component expects query to be a complete Mastodon username. For example “ tuana@sigmoid.social”. If the provided username is correct and public, MastodonFetcher will return a list of Document objects where the contents are the users latest posts.

Installation (1.x)

pip install mastodon-fetcher-haystack==0.0.1

Usage (1.x)

Because the component returns a list of Documents, it can be used at the same step that a Retriever would normally be used. For example, use it in a Retrieval Augmented Generative (RAG) pipeline as follows:

from haystack import Pipeline
from haystack.nodes import PromptNode, PromptTemplate, AnswerParser
from haystack.utils import print_answers
from mastodon_fetcher_haystack.mastodon_fetcher import MastodonFetcher

mastodon_fetcher = MastodonFetcher()

prompt_template = PromptTemplate(prompt="Given the following Mastodon posts stream, create a short summary of the topics the account posts about. Mastodon posts stream: {join(documents)};\n Answer:", 
                                output_parser=AnswerParser())
prompt_node = PromptNode(default_prompt_template=prompt_template, model_name_or_path="gpt-3.5-turbo-instruct", api_key=YOUR_OPENAI_API_KEY)

pipe = Pipeline()
pipe.add_node(component=mastodon_fetcher, name="MastodonFetcher", inputs=["Query"])
pipe.add_node(component=prompt_node, name="PromptNode", inputs=["MastodonFetcher"])
result = pipe.run(query="tuana@sigmoid.social", params={"MastodonFetcher": {"last_k_posts": 3}})

Limitations

  1. The way this component is set up is very particular with how it expects usernames. Make sure you provide the full username, e.g.: username@instance
  2. By default, the Mastodon API allows requesting up to 40 posts.